
Corrosion

Contact corrosion

In choosing a KOENIG EXPANDER® you must consider that the material of the sealing plug and the material of the production piece can show different electrical potentials. In the **presence** of an electrolyte (e.g. 5% water-NaCl solution), this potential difference causes electrochemical attack on the least noble of the metals in contact – galvanic corrosion. In this case, either the

base material or its surface protection will become the anode and will be transferred to the pure metal of the cathode. The corrosion speed or the current density will be determined by the relative surface area or volume of the anode and cathode as illustrated below.

Effect of galvanic corrosion

The following table shows the expected galvanic corrosion behavior of KOENIG EXPANDER® plugs in common base materials

allowing for the relative surface areas of both metals, which influences the speed of corrosion.

Base material of the installation	Series											
	MB 600	MB 700	MB 850	CV 173	CV 588	SK/ SKC	HK	LP	LK 600	LK 950	BF. BR	
Steel, Carbon/Low Alloy, Plain												
Steel, Carbon/Low, Zn Plated, Chromate												
Steel, Carbon/Low Alloy, Phosphatized												
Nitrided or Case Hardening Steel	Behavi	Behavior depends on the method used										
Stainless Steel, X8CrNiS18-9, 1.4305, AISI 303												
Stainless Steel, X12CrS13, 1.4005, AISI 416												
Cast Iron EN 1561, Plain												
Cast Iron EN 1561, Zn Plated, Chromate												
Cast Iron EN 1561, Phosphatized												
Ductile Cast Iron EN 1563, Plain												
Ductile Cast Iron EN 1563 Zn Plated, Chromate												
Ductile Cast Iron EN 1563 Phosphatized												
AlMg1SiCu EN AW- 6061												
AlMgSiPb EN AW- 6012												
AlCu4Mg1 EN AW- 2024												
AlZnMgCu1,5 EN AW- 7075												
G-AlSi7Mg A-Norm 356												
G-AlSi9Mg												
G-AlSi10Mg												

Key to the galvanic corrosion behavior of KOENIG EXPANDER® plugs in the presence of an electrolytic medium installed in base materials per the above table.

Accelerated
Not Accelerated
Slightly Accelerated

Suggestions to Prevent Galvanic Corrosion

- Choose materials with no or low potential difference.
- Use corrosion reducing designs, i.e. if possible prevent the accumulation of fluids on the outer surface of the workpiece.
- By using suitable surface coatings, corrosion attack can be considerably reduced.

Salt spray testing per DIN EN ISO 9227 is available upon request.

Т