

ESKA® – HA-SCHRAUBEN-GARNITUREN®

made of high-strength aluminium for preloadable aluminium constructions and structures with higher corrosion protection and reduced weight

Description/Fields of application

HA-SCHRAUBENGARNITUREN® from ESKA® are made of a highstrength aluminium alloy for preloaded joints to connect aluminium constructions and structures in aluminium building industry. This is the first aluminium system solution world-wide with general building inspection approval according to abZ in the tightening process with optimised preload force.

The HA-SCHRAUBENGARNITUREN[®] from ESKA[®] are suitable for all industrial applications in which light-metal components have to be tightened safely under the aspects of weight saving, constant preload force, and corrosion optimisation. Thus, lightweight construction concepts can be implemented in a persistent, safe, and visually appealing manner. Torques and preload forces have been confirmed by inspections in terms of general building inspection approval.

Advantages

of HA-SCHRAUBENGARNITUREN® from ESKA®

- Approx. 65 % weight saving as compared to steel bolts of same size
- No visual depreciation due to rust in association with aluminum components due to preverted contact corrosion
- Enhanced resistance to corrosion and applicable without additional coating
- Reduced maintenance efforts thanks to the consistency of preload forces over time and temperature, thus ensuring sustainable joint durability
- Extended product range even for dimensions smaller than M12 as compared to the system solutions HV and HR according to DIN EN 14399
- Visual upgrade of joints thanks to coloured anodic coats
- As compared to the HV steel system solution, the notched-bar impact work in the lower temperature range (-40°C) will not decrease; material embrittlement will not increase.

Fields of application

- Aluminium Design & Arts
 Bridge construction, buildings, support structure buidling
- Renewable energies
 Solar panels, photovoltaic installations
- Infrastructure & industry Railway facilities, antenna construction, conveyor technology, tunnel equipment

HA-SCHRAUBENGARNITUREN® from ESKA® vs. HV-bolt-set according to DIN EN 14399-1 after 1008 hours of salt spray test (screwed in aluminium)

Product properties

Characteristic features			HA-bolts	HA-nuts	HA-washers
Tensile strength	R _m	[MPa]	≥ 410		
Yield strength at 0,2 %	R _{p0,2}	[MPa]	350 - 400		
Elongation at break of a prepared test sample in percent	А	[%]	≥7		
Vickers hardness	HV10		≥ 125	≥ 125	≥99
Brinell hardness	HBW		≥ 120	≥ 120	≥94
Chemical composition			EN AW-6056 (AlSi1MgCuMn)	EN AW-6056 (AlSi1MgCuMn)	EN AW-6082 (AlSi1MgMn)
Thread tolerance			6g	6H	
Heat treatment condition			Т6	Т6	Т6

Available dimensions of HA-SCHRAUBENGARNITUREN®

Thread dimensions* (nominal diameter in mm)	Shaft length in mm	Maximum thickness of clamping pack in mm	
M8	40 - 85	71,85	
M10	45 - 155	138,95	
M12	50 - 155	134,90	
M16	60 - 175	149,40	
M20	75 - 175	145,90	

*other dimensions on request

	Torque-controlled preload		Combined preload procedure		
Dimensions (nominal diameter d in mm)	Tightening torque 3 rd tightening M _{A,HA-DV} [Nm]	Preload force F _{p.c-HA*} [kN]	Tightening torque 2 nd tightening step M _{A,HA-KV} [Nm]	Prevailing angle $\Delta^{1)}$ for t ²⁾	Preload force F _{p.c-HA} [kN]
M8	11	9	8		11
M10	22	14	15	< 2d: 60° 2 - 6d: 90° 6 - 10d: 120°	17
M12	35	21	25		24
M16	90	40	65		45
M20	170	60	120		70

 $^{\mbox{\tiny 1)}}\mbox{according to DIN EN 1090-2 and Table 48}$

 $^{\rm 2)}$ t: total nominal thickness of the parts to be connected (including all filler plates and washers)

